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Abstract
A trilayer paraelectric/ferroelectric/paraelectric system is studied within the framework of the
Ginzburg–Landau–Devonshire theory in consideration of the elastic interactions between each
layer. An analytic expression of the ferroelectric phase transition temperature for the
ferroelectric layer is derived. The polarization, dielectric properties and the response to the
external field are studied numerically. Our results show that there are two types of thickness
effects on the properties of the film considering the effect of dislocation. By changing the
thickness of each layer, the ferroelectric layer can be highly adjusted and may have very good
potential applications such as transducers, sensors and actuators.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ferroelectrics have been extensively studied because of their
wide and potential applications in many fields such as memory,
high frequency electronics, capacitors, electrocaloric, electro-
optic, piezoelectric and magnetoelectrics multifunctional
devices [1–3]. Properties of the ferroelectrics can be affected
by a myriad of factors, including ambient temperatures,
boundary conditions, sample dimensions, misfit epitaxial
stresses and defects such as dislocations and vacancies [4].
With the development of film growth, atomic-scale control of
films and multilayers is expected to produce strong property
enhancements and combinations of desired properties [5].
Recently, more attention has been paid to ferroelectric graded
thin films, layered multiphase structures, ultrathin films,
nanotubes, nanoparticles and nanowires [6–10]. Ferroelectrics
with high tunability are now an issue of keen interest because
of the potential application in microwave devices and sensitive
functional devices such as electronic scanning antennas,
tunable filters, varactors, voltage controlled oscillators, delay
lines and IR detection [11]. The tunability of ferroelectrics

2 Author to whom any correspondence should be addressed. Also at: The State
Key Lab of Optoelectronic Materials and Technologies, School of Physics and
Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China.

is the dependence of the dielectric permittivity on the applied
dc bias electric field with the trend ‘the higher the dielectric
constant, the higher the tunability’ [3]. It was found that graded
films are usually with larger tunability and can be obtained
mainly through ways such as the graded temperature, stress and
composites. However, tunable ferroelectrics, in other sense,
can be gained by applying strain and stress [12] for design of
the material as needed.

Multilayered epitaxial thin films are a promising solution
for application in kinds of functional devices. Composites,
lattices mismatch stresses and thicknesses of relative layers
can greatly influence the properties of the FE layer [13]. With
a proper design, we can get the desired properties. In this work,
we study a trilayer system within the framework of the time-
dependent Ginzburg–Landau–Devonshire (TDGLD) theory.

2. Thermodynamic model

We consider the paraelectric/ferroelectric/paraelectric
(PE/FE/PE) trilayer system covered by hard electrodes as
shown in figure 1, where h and H are the thicknesses of the FE
and PE layers, respectively. The top and bottom PE layers have
the same thickness. We set the coordinate system z = 0 at the
middle of the PE layer, and the free surfaces at z = h/2 + H
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Figure 1. Schematic of the calculation model.

and z = −(h/2 + H), respectively. Because of the high sym-
metry of the system, we assume that there is no bending in the
layered structure.

2.1. Free energy

We use FE material with lattice parameter smaller than that of
the covered PE material. In our system, we use SrTiO3 as the
PE material and BaTiO3 as the FE material. If the lattices are
well matched, the FE crystal will be highly constrained. Under
the phase transition temperature, the BaTiO3 layer constrained
in the x–y plane will have a spontaneous polarization with the
direction perpendicular to the plane, that is P1 = P2 = 0 and
P3 = P(z). The total free energy per unit area of the trilayer
can then be written as

�F = FP + FEle + FSurf + FEla

=
∫ h/2+H

−(h/2+H)

[fP (z) + fEle(z) + fSurf(z) + fEla(z)] dz, (1)

where FP is the self-energy of the reference state which is
free from the external electrical and mechanical fields. FEle,
FSurf and FEla are contributions due to actions on the reference
state caused by electric fields, surface and mechanical stresses,
respectively. fP , fEle, fSurf and fEla are the corresponding
energy densities.

If the paraelectric layers do not have phase transitions, the
first term of equation (1) will only be the contribution of the
ferroelectric layer and can be written as the sum of the non-
linear Landau free-energy function for uniform infinite crystal
and the Ginzburg contribution to account for the presence of
non-uniformity in P :

FP =
∫ h/2

−h/2

1

2
A(T − Tc0)P

2 +
1

4
BP 4 +

1

6
CP 6

+
1

2
D11

(
dP

dz

)2

dz, (2)

where A, B and C are the expansion coefficients of the
Landau free energy associated with the dielectric stiffness and
higher-order stiffness coefficients at constant stress [14], Tc0

is the Curie–Weiss temperature of the bulk material, D11 is
the gradient energy coefficients and can be approximated as
ξ 2 · |A(T − Tc0)| and ξ is the characteristic length along which
the polarization varies.

The second term in equation (1) is the contribution
from the depolarization and external electric fields Ed and
Eext, respectively. The depolarization field can be obtained
by solving the electrostatic equilibrium ∇ · D = 0 with
special boundary condition such as the short circuit or open-
circuit boundary conditions [15]. With possible charge

compensation, we may assume for simplicity that Ed is
negligible. The contribution fEle can be written as

FEle =
∫ h/2

−h/2
[−EextP(z)] dz. (3)

For a material with finite size, there is a surface relaxation
because of the existence of the surface. A simplified
description of the surface energy can be given as follows:

Fsurf = D11

2

∫
s

P 2

δ
ds, (4)

where s is the surface area of the element and δ is the
extrapolation length along the z-axis.

The extrapolation length describes the difference between
the surface and the bulk due to the surface relaxation on the
polarization [16, 17]. The values can be positive or negative,
corresponding to a reduction of polarization or an enhancement
of polarization near the surfaces, respectively. The former is a
more common case in ferroelectric materials. In general, it can
be affected by boundary conditions and should be determined
experimentally or by first-principle calculations for different
materials [18].

The elastic energy contribution FEla in the trilayer is
the interaction of the external stress and phase transition
stress. Generally, the ferroelectric phase transition is
caused by a change of crystallographic structures associated
with a transformation strain, which is also known as
spontaneous strain or eigenstrain. For materials free from
any other external force and surface constraint, the eigenstrain
is εP

ij = QijklPkPl [19], Qijkl is the electrostrictive coefficient
tensor. In this case, the polarization P is along the z

direction and the transformation strain can be expressed
as εP

11 = εP
22 = εP = Q12P

2. With a coherent interface,
the in-plane misfit strain in the FE layer can be written
as εm

11 = εm
22 = εm = (aeff

s − af )/af . aeff
s is an introduced

effective substrate lattice parameter because of the relaxation
of the lattice mismatch by formation of dislocations. The
dislocation density varies with the thickness of the film. We
introduce such thickness-dependent relaxation as the classical
description [20]

aeff
s = as

ρas + 1
, ρ = ε0

af

(
1 − hρ

h

)
, (5)

where as is the lattice parameter of the substrate and h is the
thickness of the FE layer. ρ is the equilibrium linear dislocation
density at the deposition temperature, ε0 = (af − as)/as and
af are the average misfit strain and in-plane lattice parameter
of the film at the growth temperature, respectively. hρ is
the average critical thickness, below which dislocation is not
feasible. We should note that hρ will be different with different
thicknesses of the substrate or the PE layer in the model [21].
Because of the limitation of the experiment data about the
substrate thickness effect on the dislocation, we take hρ as a
constant with different substrate thicknesses.

We consider both the FE and PE layers are cubic elastic
media with moduli C11, C12 and C̄11, C̄22, respectively. The

2
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effective elastic constants are given by G = C11 + C12 −
2C2

12/C11 and Ḡ = C̄11 + C̄12 −2C̄2
12/C̄11. Therefore, stresses

in the trilayer that are caused by the combined effects of the
misfit and transformation strains can be calculated by following
the method of Timosheko [21]. Starting with the uncoupled
FE and PE layers, the unconstrained incompatible in-plane
strains are ε11 = ε22 = εm − Q12P

2 in the FE layer and
ε̄11 = ε̄22 = 0 in the PE layer. Uniform stresses are then
imposed on each layer to achieve displacement compatibility
and equilibrium, i.e. uniform strain and zero net force [12].
Finally, the constraint of strain is relaxed uniformity, the
built-in or the residual equilibrated uniform stress ε can be
found in the final configuration. For bilayer structures or
asymmetry laminates, the stress distribution usually varies
along the thickness direction and results in bending [4]. In this
work, we did not consider the bending of the system because
of the symmetry of the trilayer.

Taking into account both the misfit and transformation
strains, the stresses σs and σf in the substrate and film are
given by σs = Ḡε for −H � z � −h/2, h/2 � z � H and
σf = G(ε − Q12P

2 + εm) for −h/2 � z � h/2, respectively.
The strain distribution in the trilayer system is determined by
the equilibrium condition∫ −h/2

−H−h/2
Ḡε dz +

∫ H+h/2

h/2
Ḡε dz

+
∫ h/2

−h/2
G(ε + εm − Q12P

2) dz = 0. (6)

The uniform strain component ε from equation (6) can be
solved as

ε = −
Gh

(
εm − Q12

h

∫ h

0 P 2 dz
)

2ḠH + Gh
. (7)

Finally, we can find the total elastic energy FEla of the trilayer

FEla = 2
∫ H+h/2

h/2
Ḡε(z)ε(z) dz

+ 2
∫ h/2

0
G(ε + εm − Q12P

2)(ε + εm − Q12P
2) dz. (8)

2.2. Time-dependent Ginzburg–Landau–Devonshire equation

The temporal evolution of the polarization field in the
ferroelectric layer can be described by the TDGLD equation

∂P (z, h, H, t)

∂t
= −M

δF(Eext)

δP

= −M

(
A∗P + B∗P 3 + CP 5 − D11

d2P

dz2
− Eext

)
, (9)

where M is the kinetic coefficient related to the domain
wall mobility. With the coupling effect of the mechanical
interaction between layers, the Landau expansion coefficients
can be renormalized as

A∗ = A(T − Tc0) − 4GQ12(ε + εm),

B∗ = B + 4GQ2
12.

(10)

The surface item yields the boundary condition as

∂P

∂z
= ∓P

δ
for z = ±h

2
. (11)

When the surface effect is negligible, that is δ → ∞, the
mechanical boundary conditions for the FE layer are average
strain controlled by the upper and lower PE layers.

With the boundary condition equation (11), equation (9)
can be solved numerically to yield the steady-state polarization
distribution. The average polarization 〈P 〉 can be described as
〈P 〉 = 1

h

∫ h

0 P dz and the uniform strain component ε can then
be determined from equation (7).

2.3. Linear analysis and phase transition temperature

The appearance of spontaneous polarization is highly
temperature dependent. Because of the electrostrictive
properties, ferroelectric crystals undergo phase transitions
always involve structural changes that will have interactions
with the external stress. On the other hand, the external stress
can also greatly affect properties of ferroelectric materials such
as the phase transition temperatures and dielectric properties.

According to linear analysis theory, we can analyse the
critical condition of the dynamic stability of the stationary
state to find the phase transition temperature [22]. The
dynamic stability of the stationary state can be probed by
applying infinitesimal perturbation � to the trivial stationary
solution P0 = 0. Neglecting the higher order small qualities
and only retaining the terms linear in �, equation (8) becomes

∂�

∂t
= −M

(
A∗� − D11

∂2�

∂z2

)
. (12)

In the same way, the boundary condition (equation (11))
can be derived with P replaced by �, that is, ∂�/∂z = ∓�/δ.
The parameter δ gives different types of the surface effects.
For simplicity, we consider the more common caseδ > 0,
and the comprehensive discussion was given by Wang and
Woo [15]. By separating variables and applying the boundary
condition, the solution for equation (12) can be separated into
time dependent and time independent parts connected by the
eigenvalue:

�(x, z, t) = eωtϕω(x, z) = �0eωt cos(kz), (13)

where ω is the eigenvalue and ϕω is the corresponding
eigenfunction. According to the stability analysis, the critical
condition is ω = 0. Thus the supercooling temperature is

Tc = Tc0 − 1

A
(D11k

2
c ) +

1

A
4GQ12(ε + εm). (14)

Substituting equation (13) into the boundary condition, kc

can be found as the smallest values of k. Substituting kc

into equation (14), we can obtain the critical phase transition
temperature which is highly dependent on the external stress.
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2.4. Tunable properties of the FE layer

As the temperature decreases from a high temperature that is
above the Curie temperature, a structural phase change takes
place and the crystal changes from paraelectric to ferroelectric
accompanied with a large increase in the dielectric constant.
By changing the phase transition temperature, we can tune
the dielectric constant to proper values in a given ambient
temperature.

For layered dielectric thin films, the dielectric permittivity
and the tunability can be strongly affected by the ‘passive’
layer. The system can be described as the in-series
connection of several capacitors. Electrically, the effective
dielectric permittivity of such composite can be written as [3]

1
εmix

= 1−q

εP
+ q

εF
, where q is the volume concentration of the

ferroelectric phase. εmix, εP and εF are the dielectric constants
of the composite, ferroelectric and paraelectric, respectively.

In this paper, we focus only on the properties of the
FE layer. The dielectric susceptibility of the FE layer
can be determined as the small-signal dielectric response

χF =
(
ε0

∂2f

∂P 2

)−1
|Eext=0, the form of which is given by

χ−1
F = ε0(A

∗ + 3B∗〈P 〉2 + 5C〈P 〉4) with 〈P 〉 solved from the
static state in the absence of external field. ε0 is the permittivity
of free space.

2.5. Response of the trilayer under a cyclic electric field

It is well known that the properties of ferroelectrics can be
greatly affected by the external stress. Different constraints or
tensions can lead to different material responses to the external
field. An in-plane constraint can produce a large enhancement
of the remnant polarization and the coercive field. We
simulated the hysteresis loop by solving the TDGLD equation
which governs the time evolution of the FE layer under a cyclic
sinusoidal external field Eext along the z direction:

Eext = E0 sin

(
2πt

TE

)
= E0 sin(2πtfE), (15)

where E0, TE and fE are the amplitude, period and frequency
of the sinusoidal electric field, respectively.

3. Results and discussions

We studied a specific example of the SrTiO3/BaTiO3/SrTiO3

trilayer system. The material constants for the Landau
free energy, the electrostrictive coefficients and the elastic
properties are from [6,23]. For simplicity, we take the two PE
layers with the same thickness. The average polarization 〈P 〉
of the FE layer is calculated by solving equation (9) without
external field. With the thickness-dependent dislocation effect,
the spontaneous polarization has a different trend with the
thickness of the PE layer as shown in figure 2(a). When the
FE layer is rather thin, the average polarization P increases
with increasing thicknesses of the PE layers; while the FE
layer is thicker than about 100 nm, P decreases with increasing
thicknesses of the PE layers. The reasons for the two cases are
as follows. (i) When the FE layer is rather thin, there are a

Figure 2. (a) Average polarization and (b) phase transition
temperature of the FE layer with different thicknesses versus the
thicknesses of the PE layers.

few dislocations during deposition and the misfit strain with
a little relaxation is larger than the spontaneous eigenstrain
at the stable state, that is |Q12〈P 〉2| � |εm|, which results
in a tensile residual strain. According to equation (7), the
tensile stain decreases with increasing PE layer thickness,
resulting in an enhancement of the spontaneous polarization
and an increase in the phase transition temperature. We
should note that the thickness of the FE layer we considered
is larger than the critical dislocation thickness hρ and the
thickness effect is mainly due to the dislocation relaxation.
For ultrathin film whose thickness is less than 30 nm, surface
effect, leakage current, occurrence of the dead layer and the
depolarization field will be very significant and usually the
spontaneous polarization will decrease with the decrease in
the film thickness [9, 24, 25]. (ii) When the FE layer is thick,
the misfit strain is relaxed and smaller than the spontaneous
strain, that is |Q12〈P 〉2| � |εm|, which results in a compressive
residual strain. In this case, the PE layer is a ‘passive’ layer to
the FE layer. With the increase in the PE layer thickness, the
spontaneous polarization and the phase transition temperature
are deduced (figure 2).

The dielectric susceptibility versus temperature with
different ratios of layer thickness is given in figure 3, where
the thickness of the FE layer is 30 nm. The cases when the
FE layer is thin or thick are different as expected associated
with the spontaneous polarizations and phase temperatures.
By adjusting the thickness of each layer, large dielectric
susceptibilities can exist in a broad area of temperature.
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Figure 3. Dielectric susceptibility versus temperature with different
ratios of layer thickness.

Figure 4. Response of the system to the external field with different
ratios of layer thickness.

The response of the system to the external field is also
simulated as shown in figure 4. We compare the cases where
H/h = 0.1, 1 and 5 with h = 30 nm. The average polarization
〈P 〉 is calculated as a function of a sinusoidal applied electric
field by solving equation (9). In equation (15), the amplitude
of the external field used is E0 = 100 MV m−1. From the
hysteresis loops of the trilayer, we can see that the remnant
polarization Pr and coercive field Ec are enhanced as H

increases when the FE layer is thin and weakened when the
FE layer is thick.

4. Conclusions

In summary, an elastic and thermodynamic model is
constructed for investigating the properties of a PE/FE/PE
trilayer system within the framework of Ginzburg–Landau–
Devonshire theory. Considering the effects of the dislocations
and misfit strain between the layers, we obtained static
and dynamic polarization, phase transition temperatures and
dielectric properties as a function of the layer thicknesses.
Our results show that the properties of the FE layer are

greatly affected by the PE layer and can be adjusted by
varying the thicknesses of the relative layers. The elastic and
thermodynamic model developed in this paper is applicable to
many other multilayer systems.
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